网卡是什么
网络接口控制器(英语:network interface controller,NIC),又称网络接口控制器,网络适配器(network adapter),网卡(network interface card),或局域网接收器(LAN adapter),是一块被设计用来允许计算机在计算机网络上进行通讯的计算机硬件。由于其拥有MAC地址,因此属于OSI模型的第1层。它使得用户可以通过电缆或无线相互连接。每一个网卡都有一个被称为MAC地址的独一无二的48位串行号,它被写在卡上的一块ROM中。在网络上的每一个计算机都必须拥有一个独一无二的MAC地址。没有任何两块被生产出来的网卡拥有同样的地址。这是因为电气电子工程师协会(IEEE)负责为网络接口控制器销售商分配唯一的MAC地址。
网卡以前是作为扩展卡插到计算机总线上的,但是由于其价格低廉而且以太网标准普遍存在,大部分新的计算机都在主板上集成了网络接口。这些主板或是在主板芯片中集成了以太网的功能,或是使用一块通过PCI (或者更新的PCI-Express总线)连接到主板上的廉价网卡。除非需要多接口或者使用其它种类的网络,否则不再需要一块独立的网卡。甚至更新的主板可能含有内置的双网络(以太网)接口。
简介
网卡上面装有处理器和存储器(包括RAM和ROM)。网卡和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的。而网卡和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行。因此,网卡的一个重要功能就是要进行串行/并行转换。由于网络上的数据率和计算机总线上的数据率并不相同,因此在网卡中必须装有对数据进行缓存的存储芯片。
网卡以前是作为扩展卡插到计算机总线上的,但是由于其价格低廉而且以太网标准普遍存在,大部分新的计算机都在主板上集成了网络接口。这些主板或是在主板芯片中集成了以太网的功能,或是使用一块通过PCI (或者更新的PCI-Express总线)连接到主板上的廉价网卡。除非需要多接口或者使用其它种类的网络,否则不再需要一块独立的网卡。甚至更新的主板可能含有内置的双网络(以太网)接口。
在安装网卡时必须将管理网卡的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉网卡,应当从存储器的什么位置上将局域网传送过来的数据块存储下来。网卡还要能够实现以太网协议。
网卡并不是独立的自治单元,因为网卡本身不带电源而是必须使用所插入的计算机的电源,并受该计算机的控制。因此网卡可看成为一个半自治的单元。当网卡收到一个有差错的帧时,它就将这个帧丢弃而不必通知它所插入的计算机。当网卡收到一个正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送一个IP数据包时,它就由协议栈向下交给网卡组装成帧后发送到局域网。
随着集成度的不断提高,网卡上的芯片的个数不断的减少,虽然各个厂家生产的网卡种类繁多,但其功能大同小异。
别称
计算机与外界局域网的连接是通过主机箱内插入一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡)。网络接口板又称为通信适配器或网络适配器(network adapter)或网络接口卡NIC(Network Interface Card),但是更多的人愿意使用更为简单的名称“网卡”。
功能详解
网卡上面装有处理器和存储器(包括RAM和ROM)。网卡和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的。而网卡和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行。因此,网卡的一个重要功能就是要进行串行/并行转换。由于网络上的数据率和计算机总线上的数据率并不相同,因此在网卡中必须装有对数据进行缓存的存储芯片。
在安装网卡时必须将管理网卡的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉网卡,应当从存储器的什么位置上将局域网传送过来的数据块存储下来。网卡还要能够实现以太网协议。
网卡并不是独立的自治单元,因为网卡本身不带电源而是必须使用所插入的计算机的电源,并受该计算机的控制。因此网卡可看成为一个半自治的单元。当网卡收到一个有差错的帧时,它就将这个帧丢弃而不必通知它所插入的计算机。当网卡收到一个正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送一个IP数据包时,它就由协议栈向下交给网卡组装成帧后发送到局域网。
随着集成度的不断提高,网卡上的芯片的个数不断的减少,虽然各个厂家生产的网卡种类繁多,但其功能大同小异。
主要功能
1、数据的封装与解封
发送时将上一层交下来的数据加上首部和尾部,成为以太网的帧。接收时将以太网的帧剥去首部和尾部,然后送交上一层
2、链路管理
主要是CSMA/CD(Carrier Sense Multiple Access with Collision Detection ,带冲突检测的载波监听多路访问)协议的实现
3、编码与译码
即曼彻斯特编码与译码。
网卡驱动
由于驱动功能层的存在,协议驱动程序和网卡驱动程序之间相互独立,大大简化了网络设备增加和网络组件扩展的复杂度。目前网络协议栈主要支持增强型的网络设备驱动 (Enhanced Network Driver, END)。
END设备驱动程序的装载
END设备驱动程序的装载主要就是完成END设备驱动 程序与驱动功能抽象层的挂接,使得网络协议栈实现对 END设备的控制。具体过程包括: 初始化网卡和PHY设备,配置网卡和 PHY 设备的通信参数等;为网卡控制结构分配空间同时初始化END_OBJ结构,END_OBJ结构主要包括网卡控制结构以及与网络协议栈相关的参数信息;对网卡驱动对应的参数串进行解析和处理;为接收数据分配空间,保证接收数据的存放;通过配置END_OBJ结构中的NET_FUNCS 参数实现网卡驱动与网络协议栈的挂接。
启动 END 设备
END设备的启动过程主要包括中断处理程序的挂接和使 能网卡中断。对于网卡设备来说,其处理数据的方式可分为中断和轮询两种工作模式,在END设备启动过程中,将接收 数据和发送数据均设置为中断模式,并挂接接收和发送数据的中断处理程序,最后使能网卡中断、接收和发送中断,则可完成END设备的启动。
网络数据包的接收
对于网络数据包的接收来说,操作系统的网络协议栈无需网卡驱动实现对网络数据包的处理。当网卡设备接 收到数据后,其会产生一个接收中断,在接收中断处理程序中, 程序会调用netJobAdd函数启动一个任务程序将网卡设备接收到的数据传递给驱动功能抽象层,网络协议栈通过驱动功能抽象层的接收函数获取到网络数据包并进行相应的数据处理。此处利用netJobAdd 函数可以减少接收中断的处理时间,提高网络数据的接收能力。
网络数据包的发送
对于网络数据包的发送来说,当网络协议栈发送数据时,其会将数据放置到缓冲区中,并通过调用驱动功能抽象层的发送函数将缓冲区中的数据发送给网卡设备,网卡设备接收到数据后就将其置于发送缓冲区中等待数据的发送。
属性设置
一般设置
网卡属性设置步骤如下:
1)将"本地连接 2"改名为"控制网 A",用于连接过程控制网 A 网,其属性设置如下:
IP 地址:128.128.1.X(X 为操作节点地址限定范围内的值),其它如 DNS、WINS 等设置为默认。
2)将"本地连接 3"改名为"控制网 B",用于连接过程控制网 B 网,其属性设置如下:
IP 地址:128.128.2.X(X 为操作节点地址限定范围内的值),其它同上。
3)将"本地连接"改名为"操作网",用于连接操作网,其属性设置如下:
IP 地址:128.128.5.X(X 为操作节点地址限定范围内的值),其它同上。
在设置完本地连接的属性后,需检查网卡是否工作正常,即依次将各网卡连接到网络中,检查该网卡是否工作正常。
高级设置
通过高级网卡选项可以提升网络性能:
有效利用CPU:巨型帧vs.卸载功能
如果服务器性能低下,那么可能是由于网络负载较大。标准的以太网数据包大小为1518个字节,大多数文件被拆分为成百上千甚至上百万个数据包或者帧。这些小的数据包通过网络传输,和众多节点共享网络带宽,但是数据帧的发送与接收会带来CPU开销。
大多数网卡支持巨型帧,这意味着能够处理高达9000字节的数据包或者帧。巨型帧在每个数据包中包括更多的数据,因此网络中需要传输的数据包数量就变小了。吞吐量提升意味着开销——数据包头与其他数据包内容——以及CPU开销减少了。
巨型帧肯定存在缺点。管理员必须对网络中的所有节点进行配置才能支持巨型帧的传输。巨型帧并不是IEEE标准的一部分,因此不同的网卡配置的巨型帧大小有所不同。为了在节点之间高效传输巨型帧要做一些实验。更大的数据包可能会增加某些负载的延迟,因为其他节点要等更长的时间才能使用带宽,请求与发送被丢弃或者被破坏的数据包也需要花更长的时间。
IT专业人员可能放弃巨型帧而使用具有LSO以及LRO功能的网卡。LSO和LRO允许CPU通过网卡传输更多数量的数据,而且基本上与巨型帧提供了相同的CPU性能。
通行能力:可调整的帧间距vs.以太网升级
以太网在每发送一个数据包后都要等一段时间,这称之为帧间距。这为其他网络节点占用带宽并发送数据包提供了机会。帧间距等于发送96个数据位的时间。例如,1Gb以太网使用标准的0.096ms的帧间距,10Gb以太网的帧间距为0.0096ms。
利用这一固定的数据包传输之间的间距并非总是有效而且在网络负载较大的情况下可能会降低网络性能。支持自适应帧间距的网卡能够基于网络负载动态调整帧间距,这有可能提升网络性能。除非接近网络带宽,否则调整帧间距通常不会提升网络性能。
全方位的网络性能基准测试能够展现网络使用模式。如果以太网连接频繁达到带宽上限,那么升级到速度更快的以太网或者使用网卡绑定而非调整帧间距将能够提升网络性能。
限制CPU中断,提升CPU性能
当数据包在网络中传输时,网卡会产生CPU中断。以太网速度越快,CPU中断的频率也就越高,CPU必须更多地关注网络驱动器以及其他处理数据包的软件。如果流量起伏不定,CPU性能可能会变得不稳定。支持人为中断节流的网卡能够减少CPU中断频率,将CPU从无限的网卡中断中解放出来,很可能能够提升CPU性能。
中断限制越多并不一定越好。过高的中断限制可能会降低CPU的响应能力;CPU将需要花更长的时间来处理所有正在产生的中断。当高速小数据包近乎实时地到达时,限制中断将会降低性能。在多种模式下对网络以及CPU性能进行测试直到能够建立起充分的系统响应能力,产生平滑的CPU中断。
还可以考虑支持TCP/IP卸载功能的网卡。这些网卡能够在线处理众多CPU密集型工作任务,同时减少对CPU的中断请求。
优先处理对时间敏感的数据类型:启用包标记
对事件敏感的数据类型比如VoIP或者视频通常按照高优先级流量对待,但是网络对所有数据包一视同仁。采用数据包标记,被标记的数据包能够被分到操作系统设置的流量队列中,在处理其他低优先级的数据包之前先处理高优先级的VoIP以及视频数据包。包标记有助于QoS战略,而且是很多VLAN部署的一个必要组成部分。
如果网络性能低于已定义的基准,可以对网卡进行调整,务必对服务器以及网卡进行基准测试后再对配置进行更改。这些推荐的网卡调整不会带来显著的性能提升,但是也不受预算的限制。随时间变化评估并观察网络性能,检查任何意想不到的后果,比如提升了某个工作负载性能却降低了其他工作负载的性能。
鉴别方法
下面就为大家介绍一下一款优质网卡应该具备的条件:
(1)采用喷锡板
优质网卡的电路板一般采用喷锡板, 网卡板材为白色,而劣质网卡为黄色。
(2)采用优质的主控制芯片
主控制芯片是网卡上最重要的部件,它往往决定了 网卡性能的优劣,所以优质 网卡所采用的主控制芯片应该是市场上的成熟产品。市面上很多劣质网卡为了降低成本而采用版本较老的主控制芯片,这无疑给 网卡的性能打了一个折扣。
(3)大部分采用SMT贴片式元件
优质网卡除电解电容以及高压瓷片电容以外,其它阻容器件大部分采用比插件更加可靠和稳定的SMT贴片式元件。劣质网卡则大部分采用插件,这使 网卡的散热性和稳定性都不够好。
(4)镀钛金的金手指
优质网卡的金手指选用镀钛金制作,既增大了自身的抗干扰能力又减少了对其他设备的干扰,同时金手指的节点处为圆弧形设计。而劣质网卡大多采用非镀钛金,节点也为直角转折,影响了信号传输的性能。
选购指南
在组装时是否能正确选用、连接和设置网卡,往往是能否正确连通网络的前提和必要条件。一般来说,在选购网卡时要考虑以下因素:
网络类型
比较流行的有以太网,令牌环网,FDDI网等,选择时应根据网络的类型来选择相对应的网卡。
传输速率
应根据服务器或工作站的带宽需求并结合物理传输介质所能提供的最大传输速率来选择网卡的传输速率。以以太网为例,可选择的速率就有10Mbps,10/100Mbps,1000Mbps,甚至10Gbps等多种,但不是速率越高就越合适。例如,为连接在只具备100M传输速度的双绞线上的计算机配置1000M的网卡就是一种浪费,因为其至多也只能实现100M的传输速率。
总线类型
计算机中常见的总线插槽类型有:ISA、EISA、VESA、PCI 和PCMCIA等。在服务器上通常使用PCI或EISA总线的智能型网卡,工作站则采用可用PCI或ISA总线的普通网卡,在笔记本电脑则用PCMCIA总线的网卡或采用并行接口的便携式网卡。PC机基本上已不再支持ISA连接,所以当为自己的PC机购买网卡时,千万不要选购已经过时的ISA网卡,而应当选购PCI网卡。
网卡支持的电缆接口
网卡最终是要与网络进行连接,所以也就必须有一个接口使网线通过它与其它计算机网络设备连接起来。不同的网络接口适用于不同的网络类型,常见的接口主要有以太网的RJ-45接口、细同轴电缆的BNC接口和粗同轴电AUI接口、FDDI接口、ATM接口等。而且有的网卡为了适用于更广泛的应用环境,提供了两种或多种类型的接口,如有的网卡会同时提供RJ-45、BNC接口或AUI接口。
接口
(a)RJ-45接口:这是最为常见的一种网卡,也是应用最广的一种接口类型网卡,这主要得益于双绞线以太网应用的普及。因为这种RJ-45接口类型的网卡就是应用于以双绞线为传输介质的以太网中,它的接口类似于常见的电话接口RJ-11,但RJ-45是8芯线,而电话线的接口是4芯的,通常只接2芯线(ISDN的电话线接4芯线)。在网卡上还自带两个状态指示灯,通过这两个指示灯颜色可初步判断网卡的工作状态。
(b)BNC接口:这种接口网卡对应用于用细同轴电缆为传输介质的以太网或令牌网中,这种接口类型的网卡较少见,主要因为用细同轴电缆作为传输介质的网络就比较少。
(c)AUI接口:这种接口类型的网卡对应用于以粗同轴电缆为传输介质的以太网或令牌网中,这种接口类型的网卡更是很少见。
(d)FDDI接口:这种接口的网卡是适应于FDDI(光纤分布数据接口)网络中,这种网络具有100Mbps的带宽,但它所使用的传输介质是光纤,所以这种FDDI接口网卡的接口也是光纤接口的。随着快速以太网的出现,它的速度优越性已不复存在,但它须采用昂贵的光纤作为传输介质的缺点并没有改变,所以也非常少见。
(e)ATM接口:这种接口类型的网卡是应用于ATM(异步传输模式)光纤(或双绞线)网络中。它能提供物理的传输速度达155Mbps
价格与品牌
不同速率、不同品牌的网卡价格差别较大。
分类
根据网卡所支持的物理层标准与主机接口的不同,网卡可以分为不同的类型,如以太网卡和令牌环网卡等。根据网卡与主板上总线的连接方式、网卡的传输速率和网卡与传输介质连接的接口的不同,网卡分为不同的类型。
按照网卡支持的计算机种类分类,主要分为标准以太网卡和PCMCIA网卡:
标准以太网卡用于台式计算机联网,而PCMCIA网卡用于笔记本电脑。
按照网卡支持的传输速率分类,主要分为10Mbps网卡、100Mbps网卡、10/100Mbps自适应网卡和1000Mbps网卡四类:
根据传输速率的要求,10Mbps和100Mbps网卡仅支持10Mbps和100Mbps的传输速率,在使用非屏蔽双绞线UTP作为传输介质时,通常10Mbps网卡与3类UTP配合使用,而100Mbps网卡与5类UTP相连接。10/100Mbps自适应网卡是由网卡自动检测网络的传输速率,保证网络中两种不同传输速率的兼容性。随着局域网传输速率的不断提高,1000Mbps网卡大多被应用于高速的服务器中。
按网卡所支持的总线类型分类,主要可以分为ISA、EISA、PCI等:
由于计算机技术的飞速发展,ISA总线接口的网卡的使用越来越少。EISA总线接口的网卡能够并行传输32位数据,数据传输速度快,但价格较贵。PCI总线接口网卡的CPU占用率较低,常用的32位PCI网卡的理论传输速率为133Mbps,因此支持的数据传输速率可达100Mbps。
双网卡切换
为了使2块网卡实现高效双冗余备份,必须保证这2块网卡具有相同的物理地址和IP地址这样 对于上层应用系统而言,系统中呈现“单网卡”的特征;反之,当系统中一块网卡切换到另一块网卡工作时,如果IP地址发生变化,则系统无法正常接收和发送数据。如果IP地址不改变,而物理地址改变,则会引起协议栈中ARP绑定表的变化,而重新对应ARP绑定表中IP地址与网卡物理地址的关系会延长两个网卡之间的切换时间。
然而,每块网卡的物理地址在全世界范围内是唯一的,它保存在网卡的PROM中。为了使2块网卡具有相同的物理地址,在网卡初始化时,从PROM中读出其中一块网卡的物理地址,将该物理地址的内容写入另一 块网卡物理地址寄存器和数据结构变量中,在此情况下,这2块网卡就具有完全相同的物理地址了。
互联网卡
目前运营商与互联网公司的合作模式,主要有两种。一是免流量系列,主要集中在互联网客户端、视频、直播等产品中,用户可以享受到费用低廉的流量资费或定向免流量服务;二是用于交易支付平台的补贴型流量卡,即完成每笔订单后可获得流量。
与传统套卡相比,互联网卡的优势主要在定向流量免流这一特特权方面,这也是在当下流量为王之时用户最满意的一点。
互联网卡未来之路还能走多远取决于合作方的生存时间外,还取决于合作方的关系。然而在当下,运营商的互联网卡套是精细操作,要深挖客户需求,持续升级,丰富产品内涵,以更贴近用户需求的方展下去。
有线网卡
光纤网卡,指的是光纤以太网适配器,简称光纤网卡,学名Fiber Ethernet Adapter.传输输的是以太网通信协议,一般通过光纤线缆与光纤以太网交换机连接。按传输速率可以分为100Mbps、1Gbps、10Gbps,按主板插口类型可分为PCI、PCI-X、PCI-E(x1/x4/x8/x16)等,按接口类型分为LC、SC、FC、ST等。
LC接口光纤网卡的含义:
LC接口名字的由来是根据光纤模块的接口定义而命名的。光纤模块按其接口可以分为:SC、LC、ST、FC等几种类型。
SC接口,由于其操作的便利性,得到广泛运用。近几年来,光纤到桌面(FTTD)的广泛运用,使得SC接口光纤网卡得到普及。
SC接口光纤网卡的含义:
SC接口光纤网卡名字的由来是根据光纤模块的接口定义而命名的。光纤模块按其接口可以分为:SC、LC、ST、FC、MTRJ等几种类型。由于SC接口光纤操作的便利性,从而使得带SC接口光模块的网卡,
得到广泛运用,而经常被人们所提起,因为也诞生了:SC接口光纤网卡这个名词。
光纤端口工作波长及传输距离:
光纤接口 网络媒介 工作波长 工作距离
SC/APC 单纤,单模 波长1310/1550nm 10/20KM
SC/PC 双纤,单模 波长1310nm 10/20/40KM
SC/PC 双纤,多模 波长850nm 550M
SFP光纤网卡含义:
SFP是 (Small Form-factor Pluggables)可以简单的理解为GBIC的升级
版本。SFP模块(体积比GBIC模块减少一半,可以在相同面板上配置多出一倍以上的端口数量。由于SFP模块在功能上与GBIC基本一致,因此,也被有些交换机厂商称为小型化GBIC(Mini-GBIC)。
SFP光纤网卡,故名思议,就是一种小型可热拨插模块的光纤网卡。在网卡集成SFP插槽,用户可根据实际需要,插入多模或者单模SFP光模块,而且可以根据实际传输距离,插入不同传统距离的光模块;而不需要根据网卡本身。这就给用户很大的选择空间。
无线网卡
无线网卡定义所谓无线网络,就是利用无线电波作为信息传输的媒介构成的无线局域网(WLAN),与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份,只可惜速度太慢。 无线网卡是终端无线网络的设备,是无线局域网的无线覆盖下通过无线连接网络进行上网使用的无线终端设备。具体来说无线网卡就是使你的电脑可以利用无线来上网的一个装置,但是有了无线网卡也还需要一个可以连接的无线网络,如果你在家里或者所在地有无线路由器或者无线AP(AccessPoint无线接入点)的覆盖,就可以通过无线网卡以无线的方式连接无线网络可上网。
无线网卡的工作原理是微波射频技术,笔记本有WIFI、GPRS、CDMA等几种无线数据传输模式来上网,后两者由中国移动和中国电信(中国联通将CDMA售于中国电信)来实现,前者电信或网通有所参与,但大多主要是自己拥有接入互联网的WIFI基站(其实就是WIFI路由器等)和笔记本用的WIFI网卡。要说基本概念是差不多的,通过无线形式进行数据传输。无线上网遵循802.1q标准,通过无线传输,有无线接入点发出信号,用无线网卡接受和发送数据。
按照IEEE802.11协议,无线局域网卡分为媒体访问控制(MAC)层和物理层(PHY Layer)。在两者之间,还定义了一个媒体访问控制-物理(MAC-PHY)子层(Sublayers)。MAC层提供主机与物理层之间的接口,并管理外部存储器,它与无线网卡硬件的NIC单元相对应。
物理层具体实现无线电信号的接收与发射,它与无线网卡硬件中的扩频通信机相对应。物理层提供空闲信道估计CCA信息给MAC层,以便决定是否可以发送信号,通过MAC层的控制来实现无线网络的CCSMA/CA协议,而MAC-PHY子层主要实现数据的打包与拆包,把必要的控制信息放在数据包的前面。
IEEE802.11协议指出,物理层必须有至少一种提供空闲信道估计CCA信号的方法。无线网卡的工作原理如下:当物理层接收到信号并确认无错后提交给MAC-PHY子层,经过拆包后把数据上交MAC层,然后判断是否是发给本网卡的数据,若是则上交,否则丢弃。
如果物理层接收到的发给本网卡的信号有错,则需要通知发送端重发此包信息。当网卡有数据需要发送时,首先要判断信道是否空闲。若空,随机退避一段时间后发送;否则,暂不发送。由于网卡为时分双工工作,所以,发送时不能接收,接收时不能发。
无线网卡标准:
1.IEEE802.11a:使用5GHz频段,传输速度54Mbps,与802.11b不兼容
2.IEEE 802.11b :使用2.4GHz频段,传输速度11Mbps
3.IEEE802.11g:使用2.4GHz频段,传输速度54Mbps,可向下兼容802.11b
4.IEEE802.11n(Draft 2.0) :用于Intel新的迅驰2笔记本和高端路由上,可向下兼容,传输速度300Mbps。
无线网卡的起源
一说到无线网卡的历史起源,就不能不提到无线局域网的的历史。无线局域网的的起源可以追溯到二十世纪四十年代的第二次世界大战期间,当时美国陆军就采用了无线电信号做资料的传输,他们研发出了一套无线电传输技术,并且采用非常高的加密技术。 后来,这项技术就在美军和盟军中间广泛使用了;这让一些学者对此产生了兴趣并从中得到了灵感。
1971年,夏威夷大学(University of Hawaii)的研究人员创造了第一个基于封包式技术的无线电通讯网络,被称为ALOHNET网络,是最早的无线局域网(wireless local area network,WLAN)。这个WLAN包括了7台计算机,采用双向星型拓扑(bi-directional star topology)横跨四座夏威夷的岛屿,中心计算机放置在瓦胡岛(Oahu Island)上。从这时起,无线局域网可以说是正式诞生了。
虽然从有限的资料中我们无法找到有关无线网卡的只言片语,但我们可以肯定的是其中必定出现了今天无线网卡的始祖。如果从1971年世界上第一个无线网络实验成功开始计算,那么无线网卡的历史也就短短的40年。事实上,无线局域网的大规模发展是在20世纪90年代。
1997年IEEE(The Institute of Electrical and Electronics Engineers)提出并制定了最早的无线标准IEEE 802.11;在1999年9月又提出了IEEE 802.11a标准和IEEE 802.11b标准。
随着IEEE802.11a、IEEE802.11b标准的出台以及Wi-Fi组织的成立促进了无线局域网产品的兼容化、标准化以及市场化。从此以后,无线局域网随着电脑的普及得到了人们越来越多的关注。无线网卡实际上是一种终端无线网络设备,它是需要在无线局域网的无线覆盖下通过无线连接网络进行上网使用的。换句话说无线网卡就是使你的电脑可以利用无线来上网的一个装置,但是有了无线网卡也还需要一个可以连接的无线网络,因此就需要配合无线路由器或者无线AP使用,就可以通过无线网卡以无线的方式连接无线网络可上网。
无线网卡的作用、功能跟普通电脑网卡一样,是用来连接到局域网上的。它只是一个信号收发的设备,只有在找到上互联网的出口时才能实现与互联网的连接,所有无线网卡只能局限在已布有无线局域网的范围内。无线网卡就是不通过有线连接,采用无线信号进行连接的网卡。
无线网卡可以根据不同的接口类型来区分,第一种是USB无线上网卡,是最常见的;第二种是台式机专用的PCI接口无线网卡;第三种是笔记本电脑专用的PCMCIA接口无线网卡;第四种是笔记本电脑内置的MINI-PCI无线网卡。
就如上面所说,我们光有无线网卡是无法连接无线网络,还必须有无线路由器或无线AP。无线网卡就好比是接收器,无线路由相当于发射器。其实还是需要有线的Internet线路接入到无线猫上,再将信号转化为无线的信号发射出去,由无线网卡接收。一般的无线路由器可以拖2-4个无线网卡,工作距离在50米以内效果较好,远了通信质量很差。
无线网卡主流的标准是IEEE 802.11n,它大幅提升无线局域网竞争力,无线局域网标准、技术快速发展,产品逐渐成熟,无线局域网的应用也日益丰富。越来越多的家庭用户开始使用无线网络,许多企业也纷纷在自己的办公大楼内布设无线局域网,同时,电信运营商对无线局域网也给予了极大关注,无论是在机场、酒店、咖啡厅等公共区域铺设公众无线网络,给大家提供方便的无线上网。
虚拟网卡
随着嵌入式设备对网络需求的增长,物联网技术通过传 感器获取大量数据,这些数据通过嵌入式网关进行处理,这就涉及到各种网络通信算法。但是通常嵌入式软硬件开发时间是不均衡的。如果网络通信算法已经完成。而硬件仍然处于调试状态,导致网络通信算法不能够及时验证,则开发效率降低。虚拟网卡测试平台提供了不需要具体硬件参与,就能完成多网卡设备的通信算法验证,降低了软件开发周期。 并且通过分析虚拟网卡接收和发送的数据包,进而对算法的准确性和性能进行测试。
故障及解决方法
网络连接不稳定
在网卡工作正常的情况下,网卡的指示灯是长亮的(而在传输数据时,会快速地闪烁)。如果出现时暗时明,且网络连接老是不通的情况,最可能的原因就是网卡和PCI插槽接触不良。和其他PCI设备一样,频繁拔插网卡或移动电脑时,就很容易造成此类故障,重新拔插一下网卡或换插到其他PCI插槽都可解决。此外,灰尘多、网卡“金手指”被严重氧化,网线接头(如水晶头损坏)也会造成此类故障。只要清理一下灰尘、用报纸把“金手指"擦亮即可解决。
驱动程序出现的故障
网卡和其他硬件一样,驱动程序不完善也极易引起故障,比如果用瑞显(Realek)RT18469芯片的网卡,在Windows下就经常会出现Net-BIOSTCP/IP方面的错误。棉驱动更新到最新版后,此类问题就会迎刃而解。所以,当网卡出现一些不明缘由的故障时,可以到“驱动之家”等专业网站更新驱动来解决(推荐大家优先使用经过微软WHQL认证的驱动,通过此认证的驱动程序与Windows系统的兼容性是最好的)。一般在排除硬件,网络故障前提下,升级或重装驱动可以解决很多莫名故障。如果网卡故障是发生在驱动程序更新之后的话,可以用网卡自带的驱动程序来恢复一下。
磁场导致故障
网卡与其它电子产品一样。很容易受到磁场干扰而发生故障。所以,网卡和网络布线时,就要采用屏蕺性强的网线和网卡设备,同时尽可能地避开微波炉、电冰箱、电视机等大功率强磁场设备,降低网卡故障的几率。
网卡数据收发异常
第一步:依次单击“开始”、“控制面板”命令,弹出系统控制面板窗口,用 鼠标双击“网络和共享中心”图标,点击其后界面中的“管理网络连接”按钮,进 入网络连接列表窗口,右击“本地连接”图标,执行快捷菜单中的“属性”命令, 打开本地连接属性对话框,选中TCP/IPv4协议选项,点击“属性”按钮,切换到对应协议属性对话框,看看这里的IP地址等参数是否设置正确,如果用户输入了错误的IP地址,或者对网络参数配置不熟悉,就很容易引起网络故障。设置好了网络参数,或许故障现象就能自动消失了。
第二步:检查网卡设备的工作状态是否正常。首先用手触摸网卡附近是否存在温度过高现象,在计算机长时间工作的情况下,如果计算机散热性能不好的话,很容易造成网卡发生性能下降现象。当确认由于温度过高引起网卡工作不正常时,只要暂时关闭计算机一段时间,就能解决问题。其次检查一些应用程序或软件系统有没有对网卡设备进行操作权限方面的限制,比方说保密系统或网络病毒,可能会影响网卡设备的工作状态,此时只要查杀干净病毒,或取消程序或软件对网卡权限的限制,就能恢复网卡设备的运行状态。第三判断网卡自身是否存在硬件问题。打开系统设备管理器窗口,展开网络适配器节点,用鼠标右键单击目标网卡设备,进入对应设备属性对话框,选择“常规”标签,在对应标签页面中就能直观看到网卡设备是否有问题了。如果从里还不能识别出网卡究竞是否正常时,不妨通过加装一块正常网卡的方法,来判断旧网卡是否在质量方面存在问题。最后尝试用鼠标右键单击“本地连接”图标,执行快捷菜单中的“修复”命令,这样或许能解决一些隐藏的网卡错误,从而恢复网卡的工作状态。
第三步:通过专业线缆测试仪器,对物理线路的连通性进行测试,以此来判断网络线缆是否有断点,网卡水晶头是否接触不良。如果发现网络线缆有断点,必须要重新更换新的网络线缆。如果看到水晶头接触不好时,不妨选用质量较高的网络模块或水晶头,重新制作网络接头。
第四步:要检查交换机的工作状态。在长时间工作后,交换机设备很容易出现老化现象,这时会引起连接到该交换机中的所有计算机上网不正常,所以观察其他计算机的上网状态,如果有多台计算机网卡数据收发异常,那十有八九是交换机问题,只要重新更换交换机即可。如果其他计算机上网正常,那不妨尝试换插一个交换端口,看看是否是端口模块有问题。有的时候,小小的灰尘也能引起交换机或网卡设备的性能下降,因此平时要加强设备的保养。
发展史
网卡:(NIC)是计算机局域网中最重要的连接设备,计算机主要通过网卡连接网络。在网络中,网卡的工作是双重的。一方面它负责接收网络上传过来的数据包,解包后,将数据通过主板上的总线传输给本地计算机;另一方面它将本地计算机上的数据打包后送入网络。
·计算机网络:是计算机技术和通信技术发展的产物,是随着社会对信息共享、信息传递的要求而发展起来的。所谓计算机网络就是利用通信设备和线路将地理位置不同的、功能独立的多个计算机系统互连起来,以功能完善的网络软件(即网络通信协议、信息交换方式及网络操作系统等)实现网络中资源共享和信息传递的系统。
·计算机网络组成:通常由三部分组成,即资源子网、通信子网和通信协议。
资源子网:是计算机网络中面向用户的部分,负责全网络面向应用的数据处理工作,其主体是连入计算机网络内的所有主计算机,以及这些计算机所拥有的面向用户端的外部设备、软件和可供共享的数据等。
通信子网:是计算机网络中负责数据通信的部分,通信传输介质可以是双绞线、同轴电缆、无线电通信、微波、光导纤维等。
通信协议:为使网内各计算机之间的通信可靠有效,通信双方双方必须共同遵守的规则和约定称为通信协议。
·资源共享:包括硬件和软件资源。硬件资源如具有特殊功能的高性能处理部件,高性能的输入输出设备(激光打印机、绘图仪等)以及大容量的辅助存储设备(如磁带机、大容量硬盘驱动器等),它们的共享可以节省硬件开销。软件资源如软件和数据。
·局域网:是一个通讯系统,他允许数台彼此独立的电脑,在适当的范围内,以适当的传输速率直接进行沟通。一般网络可依其规模来分类,通常我们在办公室或家中使用的,大都属于局域网,这种网络由于电脑间的距离短,且不必经过太多网络设备的中继,所以感觉上速度较快,但也因此适用范围较小。
·广域网(WAN)Wide Area Network:和局域网相对,凡超过局域网范围的,都可以算为广域网。
·城域网(MAN)Metropolitan ARea Network:在一个城市范围内操作的网络,或者在物理上使用城市基础电信设施(如地下电缆系统)的网络,有时从WAN中区分出来,称为城域网。
·网络体系结构:是指通信系统的整体设计,它为网络硬件、软件、协议、存取控制和拓扑提供标准。它广泛采用的是国际标准化组织(ISO)在1979年提出的开放系统互连(OSI-Open System Interconnection)的参考模型。OSI参考模型用物理层、数据链路层、网络层、传送层、对话层、表示层和应用层七个层次描述网络的结构,它的规范对所有的厂商是开放的, 具有指导国际网络结构和开放系统走向的作用。它直接影响总线、接口和网络的性能。常见的网络体系结构有FDDI、以太网、令牌环网和快速以太网等。从网络互连的角度看,网络体系结构的关键要素是协议和拓扑。
·协议(Protocol):是对数据格式和计算机之间交换数据时必须遵守的规则的正式描述。简单的说了,网络中的计算机要能够互相顺利的通信,就必须讲同样的语言,语言就相当于协议,它分为Ethernet、NetBEUI、IPX/SPX以及TCP/IP协议。
·拓扑结构:是指网络中各个站点相互连接的形式,主要有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。
·FDDI/CDDI:由美国国家标准协会ANSI的X3T9.5制定。速率为100Mbps;CDDI是基于铜电缆(双绞线)的FDDI。FDDI技术成熟,网络可延伸100公里,且由于采用环形结构和优良的管理能力,具有高可靠性。价格贵,安装复杂,标准完善,技术成熟,支持的软硬件产品丰富。
·IEEE802.5/令牌环网:常用于IBM系统中,其支持的速率为4Mbps和16Mbps两种。Novell、IBM LAN Server支持16MbpsIEEE802.5/令牌环网技术。
·交换以太网:其支持的协议仍然是IEEE802.3/以太网,但提供多个单独的10Mbps端口。它与原来的IEEE802.3/以太网完全兼容,并且克服了共享10Mbps带来的网络效率下降。
·100BASE-T快速以太网:与10BASE-T的区别在于将网络的速率提高了十倍,即100M。采用了FDDI的PMD协议,但价格比FDDI便宜。100BASE-T的标准由IEEE802.3制定。与10BASE-T采用相同的媒体访问技术、类似的步线规则和相同的引出线,易于与10BASE-T集成。每个网段只允许两个中继器,最大网络跨度为210米。
·IEEE802.3/Ethernet(以太网):最广泛的媒体访问技术,通常在OSI模型的物理层和数据链路层操作。是Novell、Widows NT、IBM、UNIX网络 LANServer、DECNET等低层所采用的主要媒体访问技术,组网方式灵活、方便、且支持的软硬件产品众多。其速率为共享型10Mbps。根据不同的媒体可分为:10BASE-2(同轴粗缆)、10BASE-5(同轴细缆)、10BASE-T(双绞线)及10BASE-FL(光纤)。
·NETBIOS/NETBEUI:NETBIOS是局域网软件接口的工业标准,可支持多种传输媒体。NETBEUI是NETBIOS的扩展用户接口,为Microaoft Windows NT和IBM的LAN Manager所采用。NETBIOS研制较早,比较简单,未考虑网间互连的情况,其命名方案不适合多种操作系统。
·IPX/SPX:NOVELL网的主要协议。支持IPX/SPX的软硬件,I/O设备很多。OSI参考模型中,相当于第三、四层(网络层、传输层)的。NOVELL网中,可在IPX上加载IP协议NETBIOS协议。
·TCP/IP:IP在UNIX中广泛配置,成为事实上的国际工业标准。IP也是Internet的主要协议。IP协议可横跨局域网、广域网,几乎所有局域网、广域网设备均支持IP协议,是统一媒体传输方式的最佳协议。IP协议为数据类协议,其传输的响应时间较好,协议交互少,较适合高速传输的需要。
·总线型拓扑:采用单根传输线作为传输介质,所有的站点都通过相应的硬件接口直接连接到干线电缆即总线上。
·星型拓扑:所有站点都连接到一个中心点,此中心点称作网络的集线器(HUB)。
·环型拓扑:所有站点彼此串行连接,就象链子一样,构成一个回路或称作环。
·混合型拓扑:在居域网之间互连后,会出现某几种拓扑结构的混合形式,即混合型拓扑。
·传输介质:是通信网络中发送方和接受方之间的物理通路,常用的网络传输介质有双绞线、同轴电缆和光缆等。
·双绞线:是综合布线系统中最常用的一种传输介质,尤其在星型网络拓扑中,双绞线是必不可少的布线材料。双绞线电缆中封装着一对或一对以上的双绞线,为了降低信号的干扰程度,每一对双绞线一般由两根绝缘铜导线相互缠绕而成。双绞线可分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)两大类。其中,STP又分为3类和5类两种,而UTP分为3类、4类、5类、超5类四种,同时,6类和7类双绞线也会在不远的将来运用于计算机网络的布线系统。
·RJ-45接头:每条双绞线两头通过安装RJ-45连接器(俗称水晶头)与网卡和集线器(或交换机)相连。
·同轴电缆:是由一根空心的圆柱网状铜导体和一根位于中心轴线的铜导线组成,铜导线、空心圆柱导体和外界之间用绝缘材料隔开。与双绞线相比,同轴电缆的抗干扰能力强,屏蔽性能好,所以常用于设备与设备之间的连接,或用于总线型网络拓扑中。根据直径的不同,又可分为细缆和粗缆两种。
·BNC接头:细缆两端安装BNC连接头,通过专用T型连接器与网卡和集线器(或交换机)相连。
·光纤:光纤即光导纤维,是一种细小、柔韧并能传输光信号的介质,光缆由多条光纤组成。与双绞线和同轴电缆相比,光缆适应了网络对长距离传输大容量信息的要求,在计算机网络中发挥着十分重要的作用。
·半双工:它的意思是虽然网卡可以接收发送数据,但是一次只能做一种动作,不能同时收发。
·全双工:就是能够"同时"接收与发送信号,譬如电话就是一种全双工传输设备,我们在听对方讲话的同时,也可以发话给对方。理论上,全双工传输可以提高网络效率,但是实际上仍是配合其他相关设备才有用。例如必须选用双绞线的网络缆线才可以全双工传输,而且中间所接的集线器(HUB),也要能全双工传输;最后,所采用的网络操作系统也得支持全双工作业,如此才能真正发挥全双工传输的威力。
·Programmed I/O:这是从早期使用迄今,行之有效的传输方式,当年NOVELL公司风靡全球的NE 2000网卡便是采用这种方式。这种传输方式传输效率不容易提高,一旦遇到大量数据的情况便成了传输的瓶颈。
·Shared Memory:这类的网卡把要传输的数据放到卡上的存储器,而这块存储器必须事先占用一端地址(大多数占用640-1024KB之间的地址),有了这个地址,这块存储器就可视为主机板存储器的一部分:当主机向网卡要数据时,便直接到这块存储器取回;反之,将数据放到存储器也等于是传给了网卡。如果将PROGRAMMED I/O方式比喻成用勺子舀水,那SHARED MEMORY便是以桶打水,在传输量多时更能突出它的效率。
·Bus Master:这类网卡上有一片控制芯片(CONTROLLER),专门用来管制整个传输过程及总线的使用,由于控制动作由这片芯片代劳,数据可以直接从网卡传给主机板,不必I/O PROT,也不必经过CPU。由于不占用CPU宝贵的时间,能有效减低系统的负担,因此特别适用在服务器上。多数EISA、MCA、PCI接口的网卡都支持用这种BUS MASTER方式与主机板沟通。
·802.3x流控制:由于数据传输更有效而提高了性能。网卡通过与交换机通信来确立最佳的数据传输。
·Parallel Tasking技术:3COM公司专利技术,此技术能够在10Mbps 或100 Mbps连接时使数据传输速度最高。
·Parallel Tasking II技术:3COM公司专利技术,此技术能够降低CPU占用率,还由于数据更有效在PCI总线上传输而提高了应用性能。在过去,在一个总线主操作周期里网卡至多每次只让64字节的数据在PCI总线上传输。为了把一个1514 字节的数据包全部传输到PC主机,就需要24个单独的总线主操作周期,这使总线的效率很低。有了Parallel Tasking II技术之后,网卡就能够在一个总线主操作周期里在总线上传输整个Ethernet数据包,这极大地提高 了PCI总线的效率。其结果是加快了传输速度并改善了系统性能,使台式机和服务器的应用软件工作得更好。
·32位总线主控DMA:宽数据通路和高速传输以及低的CPU占用率提供了最佳的系统性能。
·交互式访问技术:网卡可以动态分析网络信息流,进而调整网络性能。
·远程唤醒:使网络管理人员可以在中心地点命令远程PC通电,便于在下班时间更新和维护台式机(PC主板必须装有3脚的远程唤醒连接器;还要求配备Desktop Management Application 软件,该软件能产生Magic Packet TM远程唤醒信号)。
·DMI2.0:使远程PC能够记录和报告PC的状态,以改善桌面管理。
·3Com DynamicAccess 软件:是3Com Fast EtherLink XL系列的有机组成部分,为网卡增加各种智能。它包括1、通过服务类别来区分数据流的优先级。为时间要求高的数据分配高优先级,以改善多媒体和关键性商业应用的性能;2、分布式RMON(dRMON)SmartAgent TM软件。该软件能在交换型和高速的网络环境中提供全面的廉价的网络管理,其中包括支持所有类别的远程监控;3、Fast IP软件。该软件最大限度地缓解了路由器可能产生的各种瓶颈,从而提高了网间互联性能;4、有效的多点播控制。这种控制能够在多点播数据流充斥LAN之前自动滤除不必要的多点播流,从而扩大了网络的有用带宽。
·100VG-ANYLAN:由HP,AT&T组织开发,由IEEE802.12制定标准。其优点为可以基于三类8芯双绞线组网,且支持优先调度,适合传送多媒体信息,价格便宜。缺点是标准不成熟、缺乏容错功能的主干,保密性有限,且支持产品较少。
·ATM:高速的基于分组的网络,是未来信息高速公路的主要通信传输手段。ATM标准有ATM论坛制定(150多个国家参加)。基于53个字节的信元进行数据交换,速率可达25M、34M、45M、50M、155M、622M,并可达数Gbps。ATM支持产品越来越多,但价格较高。
发展历史:
80年代,随着微机技术的发展,微机局域网技术和产品获得迅速的发展。80年代末期,国外微机界已预言,90年代微机使用的环境就是网络。事实上确实如此,微机局域网的发展在整个计算机网络领域中具有相当大的影响,数以千计的微机网络用户分布在各个应用领域中促进了网络应用技术的发展,从而也加速微机网络技术的发展。
过去一直是国外微机局域网产品占据着网络市场,其中建网用户数占先的主要有NOVELL、3COM、IBM、BANYAN以及SUN等公司的产品。随着网络的发展,台湾的厂商以生产能力强且多在内地设厂等优势,也迅速的发展起来,象D-LINK,TP-LINK等品牌逐渐走向成熟,另外国内的计算机产品生产商如实达、联想也纷纷生产出各自的网络产品。
其实网卡的发展史也就是网络的发展史.....
网卡杂谈:
网卡的不同分类:根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI总线为32位,所以PCI网卡要比ISA网卡快。
网卡的接口类型:根据传输介质的不同,网卡出现了AUI接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。
网卡的选购:据统计,绝大多数的局域网采用以太网技术,因而重点以以太网网卡为例,讲一些选购网卡时应注意的问题。购买时应注意以下几个重点:
网卡的应用领域:以太网网卡有10M、100M、10M/100M及千兆网卡。对于大数据量网络来说,服务器应该采用千兆以太网网卡,这种网卡多用于服务器与交换机之间的连接,以提高整体系统的响应速率。而10M、100M和10M/100M网卡则属人们经常购买且常用的网络设备,这三种产品的价格相差不大。所谓10M/100M自适应是指网卡可以与远端网络设备(集线器或交换机)自动协商,确定当前的可用速率是10M还是100M。对于通常的文件共享等应用来说,10M网卡就已经足够了,但对于将来可能的语音和视频等应用来说,100M网卡将更利于实时应用的传输。鉴于10M技术已经拥有的基础(如以前的集线器和交换机等),通常的变通方法是购买10M/100M网卡,这样既有利于保护已有的投资,又有利于网络的进一步扩展。就整体价格和技术发展而言,千兆以太网到桌面机尚需时日,但10M的时代已经逐渐远去。因而对中小企业来说,10M/100M网卡应该是采购时的首选。
注意总线接口方式----当前台式机和笔记本电脑中常见的总线接口方式都可以从主流网卡厂商那里找到适用的产品。但值得注意的是,市场上很难找到ISA接口的100M网卡。1994年以来,PCI总线架构日益成为网卡的首选总线,已牢固地确立了在服务器和高端桌面机中的地位。即将到来的转变是这种网卡将推广到所有的桌面机中。PCI以太网网卡的高性能、易用性和增强了的可靠性使其被标准以太网网络所广泛采用,并得到了PC业界的支持。
网卡兼容性和运用的技术----快速以太网在桌面一级普遍采用100BaseTX技术,以UTP为传输介质,因此,快速以太网的网卡设一个RJ45接口。由于小办公室网络普遍采用双绞线作为网络的传输介质,并进行结构化布线,因此,选择单一RJ45接口的网卡就可以了。适用性好的网卡应通过各主流操作系 统的认证,至少具备如下操作系统的驱动程序:Windows、Netware、Unix和OS/2。智能网卡上自带处理器或带有专门设计的AISC芯片,可承担使用非智能网卡时由计算机处理器承担的一部分任务,因而即使在网络信息流量很大时,也极少占用计算机的内存和CPU时间。智能网卡性能好,价格也较高,主要用在服务器上。另外,有的网卡在BootROM上做文章,加入防病毒功能;有的网卡则与主机板配合,借助一定的软件,实现Wake?on?LAN(远程唤醒)功能,可以通过网络远程启动计算机;还有的计算机则干脆将网卡集成到了主机板上。
网卡生产商----由于网卡技术的成熟性,生产以太网网卡的厂商除了国外的3Com、英特尔和IBM等公司之外,台湾的厂商以生产能力强且多在内地设厂等优势,其价格相对比较便宜。
蹭网卡
蹭网卡是指插在电脑上,安装驱动,就相当于信号放大的普通网卡,但是它并不是会自动搜索邻居的无线网络并破解其安全密码的,而是通过蹭网卡的特定芯片型号支持虚拟机启动BT3/BT4/奶瓶/sicnal等软件,通过这些软件,搜索出周围的无线网络,然后通过软件解密,获得密码,然后就能达到免费上网目的。
原理
实质上是一种大功率无线网卡,同时配备了自动破解软件。无线蹭网卡并不神秘。它本质上就是一种外置的上网器,只是比普通无线上网卡搜寻网络能力要强,说到底就是配合软件获得密码,免费上人家的网。
如果普通宽带用户无线网络密码设置的是wep加密,(无论你设置得多么复杂)蹭网卡就比较容易成功,自动破解软件破解几乎不费吹灰之力。绝大部分用户都设置的是WPA/WPA2加密,这些加密方式,对于这些软件而言,需要抓取握手包,跑字典,就很复杂了,如果密码设置再复杂一些,比如字母加数字加特殊字符。就基本无能为力了!由于是无线接收,接收范围基本在1000米~3000米,能同时在几秒内能搜索到大量的网络,一般情况下搜索到10-60个网络很普遍,使用者就相当于同时装了10-60个宽带网线。总会有没有加密的信号,或者是WEP加密的信号,通过解密实现免费无线上网目的。
攻防
我们对于蹭网卡不需要太担心,只要我们把加密模式换成WPA2加密,然后经常换密码,或者隐藏无线网信号传播,或者设置IP限制,那么蹭网卡就基本没有作用了。
未知的网友